
NASA Contractor Report 182099

L__

Machine Checked Proofs of the Design and Implementation
of a Fault-Tolerant Circuit

William R. Bevier
William D. Young

Computational Logic, Inc.
Austin, Texas

Contract NAS 1-18878
November 1990

NASA
National Aeronauhcs and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NA_A-C_- I B20_) M_CH INi:-CNtCKFO

THC DFSIG_ AND IMPL_MENTATInN L;F A

FAUIT-TnL FRAr_T CIRCUIT

Logic) 42 p

Pp_nF_ PF

(Computer i on_l
C.u L.I_ 09_

NgI-15792

Unclas

_3/01 03211_1

i

i

i

I

i

i

r_

Abstract

-We describe &formally verified implementation of the "Oral Messages" algorithm of Pease,
Shostak, and Eamport [7, 8]. An abstract implementation of the algorithm is verified to achieve
interactive consistency in die _ 6ffauFts. This abstract characterization is then mapped
down to a hardware level implementation which inherits the fault-tolerant characteristics of the
abstract version. All steps in the proof were checked with the Boyer-Monre theorem prover. A
significant result of this work is the demonsWation of a fatdt-tolerant device that is formally
specified and whose implementation is proved correct with respect to this specification. A
significant simplifying assumption is that the redundant processors behave synchronously. We
also describea mechanically checked proof that the Oral Messages algorithm is "optimal" in
the sense that no algorithm which achieves agreement via similar message passing can tolerate a
larger proportion of faulty processors,, __ __-_-_ _- =._._._ =

Key words. Fault tolerance, mechanical theorem proving, program verification, specification. --

= ::

PRECEDING PAGE BLANK NOT FILMED

iii

mm

mm

mm

mm
i

U

g

w

w

z
g

Ig

m

m

U

m
m

J

J_

m_

w_

= =

E_

u

Acknowledgement

This work was sponsored in part at Computational Logic, Inc. by National Aeronautics and
Space AdminisWation Langley Research Center (NAS1-18878). The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of Computational Logic, Inc., NASA Langley
Research Center or the U.S. Government

w

w

PRECEDING PAGE BLANK NOT FILMED

v

W

m

Ill

lw

l

'v

mE

I

m
J

J

iiwo

dim--"

w:

uf

Table of Contents

--4

_Z

V"

1. Introduction .. 1

2. Interactive Consistency and the Oral Messages Algorithm 2
22.1. Interactive Consistency ...

2.2. Review of the Algorithm .. 3
3. The Specification ... 5

3.1. Our Formal Definition of the Algorithm 5
3.2. The Correctness Theorems for the Algorithm 10
3.3. Comments on the Proof of the Interactive Consistency Conditions 13
3.4. Extending the Specification .. 14

163.4-A. Multiple Applications of OM ..
3.4-B. Traces of OM Applications .. 17
3.4-C. Instantiafing the Design ... 18

4. The Implementation and Its Proof 19
4.1. The Implementation .. 19
4.2. The Proof of Correctness of the Implementation 22

5. The Impossibility Result .. 25
5.1. Review of the Theorem ... 25

275.2. An Informal Proof Sketch ...
5.3. Specifying the Problem in the Boyer-Moore Logic 28
5.4. The Machine Checked Proof ... 32

346. Conclusion ..

z

=

m

vii

PRECEDING PAGE BLAr'IKNOT FILMED

EE

Ulr

l

m
mm

II

I

=

m

B

up

m

mi

IB

II

m
m

m
m
IE

m

mE

m

WW

I

List of Figures

W

w

w

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure g:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

The OralMessagesAlgorithm--TheJournalVersion

FourCommunicatingProcessorswithOne FaultyLieutenant
FourCommunicatingProcessorswithaFaultyCommander
Some Elementary Functions
The Oral Messages AJgoridun--Mutmd]y Recursive Vet's/on
The Oral Messages Algorithm--The Real Version
Our Version of ICI
Our Version of IC2
The Invariant for IC2

Four Redundant Processes
The Internal State of a Process
Process Interconnections

Process Steps
Conespondence among Trace Functions
Three Scenarios

4
4
5
6
7

10
11
12
15
19
2O
22
23
24
28

!

m

"=3

W

m

w

PRL_:_CEDING PAGE

ix

BLANK NOT F;LMED

w

II

m

m
w

!1

gm

Xlp

'lib

m
n

I

R

_m
!I

I

_w

mm_

=__

w

1. Introduction

A key problem facing the designers of systems which attempt to ensure fault tolerance by redundant

processing is how to guarantee that the processors reach agreement, even when one or more processing

units are faulty. This problem, called the Byzantine Generals problem or the problem of achieving

interactDe consistency, was described and solved in certain cases by Pease, Shostak, and Lampoxt [7, 8].

They provided an extsemely clever algorithm called the "Oral Messages" (OM) algorithm which

implements a solution to this probleml They also proved that under certain assumptions about the type of

interprocess communication, the problem is solvable if and only if the total number of processors exceeds

three times the number of faulty processors.

We have performed a machine checked proof using the Boyer-Moore theorem prover [1, 3] that an

"abswact implementation" of the OM Algorithm does achieve interactive consistency in the presence of

faults. Mechanical checking of this proof is significant fox several reasons.

• It is the fLrStmachine checked proof of which we are aware of this quite difficult algorithm.

• We believe that our formalization provides a Veryclear and unambiguous characterization of

the algorithm.

• Our machine checked proof elucidates several issues which ate treated rather lightly in the
published version of the prooL In particular, the invariant maintained in the recursive
subcases of the algorithm is signifw.antly more complicated than is suggested by the
published prooL

The latter two advantages arise as consequences of providing a fully formal proof, whether machine

checked or not. However, the use of a powerful mechanical theorem prover as a proof checker is a boon

in managing the complexity of the formal proof.

We have also verified a hardw_::_piementation of OM(1)--the instance of OM which tolerates One

faulty process when there axe at least three non-faulty pn-ocesses--as par of the implementation of a

fault-tolerant device. Our approach to achieving this was to use our verif'wod"abswact implementation"

as a design specification. We then def'med a hardware-level characterization of the algorithm and proved

that our low-level version is a correct implementation of the high-level version. As a consequence of this

proof, we are guaranteed that our low-level implementation achieves interactive consistency. This

verified low-level _scription has been physically realized in programmable logic arrays. A significant

assumption in our design is that the redundant processors behave synchronously. Future work will be

directed at eliminating the need for this requiremenL

Finally, we have machine checked the proof [8] that no algorithm exists which achieves interactive

i

consistency via an exchange of "oval" messages if the number of faulty processors is at least one third of

the to_al. This theorem shows that the OM algorithm is "optimal" in the sense that no algorithm which

achieves interactive consistency purely via message exchange can tolerate a larger proportion of faulty

processors. This portion of the work was primarily an exercise in formal specif'r.ation and mechanical

theorem proving. Attempting to specify and Ixove _ theorem within our chosen formal framework of

theBoyer-Moorelogicisan interestingchallengeforseveral reasons.

•Ithastypicallybeenquitediffa:ult toprovea negativeexistentialstatementintheBoyer-

Moore logic,exceptincaseswhere!herangeofthequantifierisinductivelydefined,which
isnottruehere.

•Statementofthe_m requiresconsiderationofsome _ orderconcepts.The Boyer-

Moore logicisfirstorder.

We believe that the solutions to these problems adopted here indicate a rather surprising range of

expre_ive power of the Boyer-Moore logic and the benefits provided by several recent enhancements to

thelogicandtheoremlXOVer. _

The paperisorganizedasfollows. The following section describes our formalspecif'r,._tionoftheOral

.... anditsco, tnessalgorithm properties. Section 3.4describes sev_ steps massaging the

specification to make it amenable for mapping to an implementation. In section 4.1 we describe our

implementation of the algorithm; section 4.2 sketches the proof that the implementation is correct. In

section 5 we describe our formalization and proof of the theorem that no algorithm achieves interactive

consistency via exchange of oral messages ff_ number of faulty processors is at least a third of the total.

Finally, section 6 gives some of our conclusions and observations on the signit-_ of this work.

2. Interactive Consistency and the Oral Messages Algorithm

2.1 Interactive Consistency

The l:_blem addressed by the interactive consistency algorithm _ the following: given a number of

communicatingprocessors,how cantheyarriveataconsistentcommon viewofthesystemifthereare

faultyprocessorsamong _ which potentiallysendconflictinginformationtodifferentpartsof the

system. Lampo_ Shostak, and Pease [7] describe the problem in terms of the rather colorful metaphor of

Byzan_ Generals attempting to arrive at a common battle plan through an exchange of messages. One

or mcre of the generals may be traitorous and attempt to thwart the loyal generals by preventing them

from reaching agreement.

Pease, Shostak, and Lamport phrase the problem in terms of a single commanding general communicating

W

m

_w

m
!

B

m

m

m

v

m

m
I

mmw

W

m

_mw

i

XlW

mi

m

=

L_

E

with a number of lieutenant generals. In this case we desire an algorithm which guarantees the following.

A commanding general must send an order to his n - 1 fieutenant generals such that

IC1. All loyal lieutenants obey the same order.

IC2. If the commanding general is loyal, then every loyal lieutenant obeys the order he
sends.

Conditions IC1 and IC2 are called the interactive consistency conditions. [7]

We assume that the generals communicate only via oral messages.

assumed to have the following characteristics.

I. Every message that is sent is correctly delivered.

2. The receiver of a message knows who sent it.

3. The absence of a message can be detected.

That is, their communication is

In practice, we desired to use some interactive consistency algorithm in the design of a fault-tolerant

device. Sensor values are read individually by a disl_'ibutedcollection of replicated processors (generals).

These values are exchanged (as oral messages) among the wocessors in such a way that all non-faulty

processors achieve a consistent common view of the state of the system. On the basis of this common

view each non-faulty processor produces a signal to an external actuator associated with that processor.

By the interactive consistency conditions, each non-faulty processor should have the same information

and hence produce the same actuator value. Thus, even in the presence of faulty processors, non-faulty

processors would produce identical actuator values.

2.2 Review of the Algorithm

The "Oral Messages" algorithm OM(m) is inductively defined for all nonnegative integers m, and

describes the communication of an order by the commander to each of n - 1 lieutenants. The description

of the algorithm from [7] is quoted in Figure 1. The execution of the algorithm for four processors where

exactly one is faulty is illustrated in Figures 2 and 3.

Figure 2 illustrates the situation in which a loyal commanding general 8 sends its private value v to each

of three lieutenants, one of whom is traitorous. The traitorous lieutenant (Pl in this case) sends arbitrary

values (or _ value _ all) W the other :lie_ts: However, each o(_ loyal lieu_ts receives one

reliable value from the commanding general and another relayed by the other loyal lieutenant. Taking the

majority of the _ values received, the loyal fieutenants arrive at a consistent common view of the

general's value,

AlgorithmOM(O).

(1) The commander sends his value to every lieulenanL

(:2)Each lieutenant uses the value he receives f_om the commander, or uses the value
RETREAT if he receives no value.

AlgorithmOM(m), m > O.

(I)The commander sends his valueto every lieu_L For each i, letvibe the value

Lieutenantireceivesfrom thecommander,or elsebe RETREAT ifhe receivesno
value.Lieutenantiactsasthecommander inAlgorithmOM(m -I)tosend thevaluevi

toeachofthen -2 otherlieutenants.

(2)For each i,and eachj _ i,letvjbe thevalueIAeutenantireceivedfiromLieutenantj in

step(2)(usingAlgorithmOM(m - I)),or else_AT ifhe receivedno such value.

Lieutenantiusesthevaluemajority(vI.....vn.l).

Figure 1: The Oral Messages Algorithm--The Journal Version

I

m

m

l
I

U

!

I

I

n

l

V.

Flgure2: Four Communicating Processors with One Faulty Lieutenant

,ram

mm

i
l

lira

m

lira

_:

Figure3iuus_ onesinm_onthatmayoccurifthecommandinggeneralisfaulty.TheUeutenantseach

receive different values which they then faithfully relay 93 their comrades. Since no lieutenant receives a

majority, each records the default value of RETREAT. Again, IC1 and IC2 me safi_

These two scenarios illusUate how the three lieutenants can arrive at a consistent view of the general's

l

qm_

[]

m

u

q

w = • FI • II

X

Figure 3:: Four Co_dicating_ with a Faulty Commander

value via this single exchange of messages provided that there is no more than one traitor among them. In

general, with n processors of which m are faulty the OM algorithm achieves interactive consistency with

m exchanges if n > 3m + 1. In section 5 we discuss the proof [8] that there is no scheme by which a group

of processes can reliably reach agreement if a larger proportion are faulty.

m
m 3. The Specification

3.1 Our Formal Definition of the Algorithm

We have formalized a version of the Oral Messages algorithm in the computational logic of Boyet and

Moore [1, 3]. An inlmesting aspect of this formalization is that, except for a few simple subsidiary

def'mitions, the entire complexity of the algofiflun is captured in-_ i5 lines of "code." We

introduce these subsidiary definitions and then explain the formal version of the algorithm itself.

The basic data slructure maintained by ore"formalization of the algorithm is a vector of sequences of

 ges; Vec isindexed es?We ass ,ne r,x , eni processnamesare

simply numbers in the range fO..n-{.]. Figure 4 introduces some subsidiary fiw_tions we need to

describeth¢ Oral Messages algorithm and itScort_S praises." _dl e_¢essi-o}IsareintheLisp_lik_

preftx notation of the Boyer-Moore logic. (See [3] for a complete description of the syntax of out

notation .)

To formalize the notion of interixocess communication, we also introduce the function send. The

m

m

(delete • i)

(indexliet n)

(init v n)

(get i yea)

(length let)

(majority let)

(pair a b let)

(put i v vec}

(select i Ist)

(tablep n let)

(voteliet let)

ii rl

returnsa list identical to I _th theftrstoccurrence (if any) of• removed.

returns the list of numbers (0 I ... n).

creates a vector of length., all of whose elements have value v.

fetches the i a element (zero based) from vec.

returns the number of (top-level) elements in list let.

returns the majority element of let, if one exists; otherwise, returns some
fixed token.

for vectors a and b and list 1st of process names, replace in b the value of
each process in ist withthepa_ consisting of its v_lue in a and its (old) value
in b. That is, ff i • 1, then (get i (pair a b 1)) is

(cons (get i a) (get i b)).

replacesthei_ elementofyea withv.

returns the list of every i th element of let.

returns T or ir depending upon whether let is a list of n-tuples.

returns the list obtained by applying majority to each of the elements of
let.

Figure 4: Some Elementary Functions

m

m

I

i

!

l

expre_ion (send v i j) denotes the sending by process i of value v to process j.1

We are now ready to describe the algorithm itself. This is formally characterized in the three functions

vc_0, yore*, and veal.* displayed in Figure 5. Function yore0 implements the step in _ algorithm in

which the general distributes its value to each of the lieutenants. The function takes as arguments the

general's name g and value v, a list I of lieutenantsl and a vector in which to record these sends. The

result is an upda_d vec_r in which each lieu_nant i on fist i _ bound to (em_d v g i), Le., file slot

in the vector indexed by i con_h_ thatvalue. This represents the first round of communication in which

the gene.ra!,__ _ value to all li_tenants. Notice that the "initial value of _is irrelevant if].

contains all indices but g.

The two functions v_a* and yore1* are mutually recursive functions which accomplish m rounds of

message exchange among the lieutenants. Conceptually, vma* is the top-level function which takes as

arguments the number m of rounds of communication, the general' s name and value, a list I of lieutenant

name.% and the vector in which the message traffic is recordecL It returns a vector in which each

1Mole accurately,it denotes process J's r,port ef _ valm tlat pmoeu t sent toit. l/beth the _ md receiving processes
srenon-fauhy, (send v i J) shoukln_lucetov. We sv.lym thisfact in the pm¢ff.

m!

m_
R _

j_

M

!
l

U

ssma

W

w

m

Defimfion.

(vomO g v i vec)

(if (iisCp l)
(put (car i)

(send v g
(vomO g v

vec)

vet))

Definition.

(vom* m g v i vec)

(if (ze=op m)
(vomO g v i vec)
(vot_Iist

(pair (vomO g v i vec)
(voal* (subl m) 1

1)))
(vcmO g v i vec) 1 V@C)

Definition.
(voa_* m g-lAst vomO 1 vec)

(if (listp g-list)
(pair (yore* m (caz g-lAst) (get (car g-lAst)

(delete (caz g-list) i) vec)

(yore1* m (cdx g-list) vomO i vlc)
(delete (car g-lAst) 1))

(init rill (itugth vec)))

vomO)

Figure $: The Oral Messages Algorithm--Mutually Recursive Version

sam

m

m

otieutenant's position is f'dled by that fieutenant's view of the general's value. Arriving at this view

reqtfite_ m-1 rounds of communication (the call to the voa_* function), combined (l_ir'd) with the

initial round in which the general distributes his value directly (the call to vomO), and voting on each

element in the resulting map (the call to vot_ist).

The function voml* is the second of the_ of:the mutually _ive _tions which implement the

exchange of messages. It takes as arguments the number m of exchanges, a list g-list of names of

processes which will serve in turn as the general in _ round, a vector vomO in which each process' slot

is f'dled with its value sent to it by the general, a list 1 of the other lieutenants, and a vector vec in which

the message traffic is recorded. It returns a vector in which each lieutenant's name is bound to the list of

messages that lieutenant has received in this round of message exchanges.

!

7

I

To get a feel for how the algorithm works, consider again the scenario illustrated in Figure 2 in which a

loyal general g distributes value v to three lieutenants of which at most one is u'aitorous. Assume that the

genend _ pmce_ O, and _e o_ p_ce_ a_ numb_ed i, 2, and 3.2 Th_ _ de_fibed fonnaUy by _e

call (vom* 1 g v (l$.st pl p2 p3) vet), where vec is a vector of 4 n.£1's. The first

parameter specifies both the number of rotmds of message exchange and the maximum number of faulty

processors. Expanding the definition of the function yore* we obtain:

(yore* 1 g v (l£st pl p2 p3) vee)
i

(votelist (pair (vomO g v (l£st pl p2 p3) vee)
(voml* 0

(l£st: p$ p2 p3)
(vomO g v (list p1 p2 p3)
(list p1 p2 p3) vec)

(list: pl p2 p3)))

v_)

Notice that this involves two calls to (vom0 g v (l£st pl p2 p3) vec), our representation of

the step in the algorithm described informally as "the commander sends his value to every lieutenant."

This call to vomO returns a vector which records that each lieutenant has received a single message from

the commander. Tiffs is represented as the vector labeled vomO-resuh below:

t"_:t,
(K_d v g pt), _
(send v g p2), vomO-result
(sand v g p3)]

Our expansion of the call to yore* also involves a "recursive" call to our other function voaX*. The

intended semantics of vom3.* is that each of the lieutenants should take the values received in the

previous step and distribute them to the other lieutenants. The function vo=d.* iterates down the structure

of the list relnrned from vma0 and sends the value received from the commander by each of the

lieutevants on to each of the other lieutenants (we are careful not to send the value from any lieutenant to

itself). The result is the vector voml*-resuh below:

[O,
<(smad (smad v g p2) p2 pl),

(smad (smad v g p3) p3 pl)>,
<(smut (_md v g pl) pl p2),

(s4md (sand v g p3) p3 p2)>,
<(send (smad v g pl) pl p3),

(sand (smad v g p2) p2 p3)>]

voml*-result

This signifies, for example, that p3. has received two message: one containing the value that p2 said it

l

1

i

I
1

l

1

_We 'll keep the mm_e.s q, pl, p2. md p3 to nutke the exampie eader m foilow.

8

obtained from g and another containing the value that p3 said it received from g.

We can see now that:

(yore* i g v (list pl p2 p3))
I

(votelist (paiz vomO-resultvoml*-res_dl (list pl p2 p3)))

We need the application of pair here because voml*-result records the results of the exchange of

messages but not the initial "broadcast" from the commander. Expanding pair we obtain:

(votelist

[<>,
<(sm_d v g pl),

(send (sand v g p2) p2 pl),
(sand (sand v g p3) p3 pl)>,

_(sm_d v g p2),
(sand (sand v g pl) pl p2),
(send (sm_d v g p3) p3 p2)>,

<(send v g p3),
(send (send v g p1) p1 p3),
(send (send v g p2) p2 p3)>])

Thus p2, say, computes its view ofg's value by taking the majority element of the value received directly

from g itself, the value that pl said it received from g, and the value that p3 said that it received from g.

Notice that ff we assume that pl is the only faulty process, then p2 receives at least two reliable values.

Consider the messages received by p3 to convince yourself that p2 and p3 must come to the same

conclusion about g's value. 3

An alternative way of looking at this final computation is by applying our earlier observation that if both

Pi and pj are non-faulty, then (send v Pi PJ) -- v. Again assuming that pl is the only faulty

process, the vector element for p2, for example,

<(send v g p2),
(sand (sand v g pl) pl p2),

(send (sand v g p3) p3 p2)>,

reduces to

_r, (mm_t (sand v g pl) pl p2),

Applying the mjority function to this list clearly yields v.

v>.

One aspect of the discussion above is slightly misleading. Our functions worn* and vmak* are presented

as mutually recursive, these would not be acceptable to the Boyer-Moore dej_nitio, principle. However, it

3Since pl is faully, we do net cme what vtlue i1 eb_im.

l

is easy to turn these mutually recursive definitions into a single function definition which is acceptable by

a trick well known to Boyer-Moore users. The actual definition is given in Figure 6. The flg parameter

is a boolean flag which indicates whether we're in the yore* or the voml* "half' of the definition.

m

all

Definition.

(veto flg m g v i vec)
mz

(if flg
(if

(if

(zerop m)
(vomO g v i vec)
(voteiist

(pair (vmaO g v i vec)
(yore f (sub1 m) I (vomO g v i yea) i vec)
i)))

(listp g)
(pair (vom t m (caz g)

(get (caE g) v) (delete (car g) i) vec)
(veto f m (cdz g) v i vec)
(daletO {car g) 1))

(init nil (length vec))))

Figure 6: The Oral Messages Algorithm--The Real Version

U

I

u

m

l

m

r_

m

We susp(_t (and hope) that this discussion has increased your intuition about the functioning of the

algorithm, at least for the case of four lxocesso_ and one fault. An adequate intuition is quite difficult to

develop, however, as the numbers of proces_rs, faults, and rounds of message exchange increase, For

any _ssumnc_ that the algorithm achieves its goals, we need to state and prove its correctness formally.

3,2 The Correctness Theorems for the Algorithm

Recall from section 23. that an algorithm achieves interactive consistency ff conditions ICI and IC2 below

are satisfied.

ICl. All _yAl lieuwnan_ obey d_ same onk_. "- =

IC2. If the commanding general is loyal, then every loyal lieutenant obeys the ruder he sends.

In this section we display the theorems which establish that the formal analogues of ICI and IC2 hold for

the version of tJ_ Oral Messages algorithm described in the previous sectiom

The version of this correctness theo[em given by Lampo_ Shostak, and Pease [7] is:

THEOREM 1: For any m, Alsorithm OM(m) satisfies conditions IC1 and IC2 !/'there are more

[1

m

Ill

u

W

m

w

10
J

than3m generalsand atmostm traitors.

= =

=

One issue is how to introduce the notion of a fau/ry process. We do this by declaring a predicate

faulty, which lakes as its argument a processor name. This assumes that a processor is either always

faulty or always non-faulty; it does not distinguish transient or intermittent faults from permanent faults.

We could do so but it would require some additional mechanism, Our choice of formalism does not imply

that a faulty processor must somehow behave in a fashion which other processes can recognize as faulty.

If it did, our algorithm could be much simpler--merely ignore any messagesoriginating from or routed

by faulty processors. The function fault-count appliedto a list of pfoc_ names returns the
. . = =

number which are faulty; good-count _ (diffez.nce (length 1) (IVault-cotmt 1)).

The theorem assertingthat our yore function satisfiesIC1 is shownin Figure 7. Recall that IC1 requires

that all loyal lieutenantsobey the same order. The function voa returns a vector in which each

lieutenant'sname is boundto the valueit thinks is the general'svalue. We wish to fommlize the notion

that for any two loyal lieutenants, these values are the same. This is quite swaightforward in our

formalism, thoughwe need a number of hypothesesto guaranteethat theargumentsare properlyrelated.

E

m

Theorem. ICl

(implies (and (setp 1)
(mamber i 1)

(mmbe_ J i)
(not (faulty i))

{not {faulty :j))
(not _-(_r g lj)
(ioq {tiros 3 a) (1_h I})
(leq (fault-count (cons g I)) m)
(bounded-numbez-listp 1 -(length vec)))

(equal (get i (v_ t a g v I vec))
(get j (v_ t mg v i vec))))

Figure 7: Our Version of ICI

• 1

• 2
• 3

• 4

, 5
6
7

8
9

m

m

Executing our algorithm for ,- mends of message exchange where general g has value v and I is the list

of lieutenants is a call to (yore t m g v Z v@c). The conclusion of lemma It1 asserts that the

values computed for lieutenants i and j are equal The hypotheses specify the conditions under which

this can be shown to hold. Using the line numbers in Ftgure 7 for reference, these hypotheses assert that:

11

1.,thelistoflieutenantshasnoduplications;

2_ lieutenant £ is on this list;

3_ lieutenant J is on this list;

4_ lieuteuant £ is not faulty;

5_ lieutenant j is not faulty;

6_ the general g is not m the list of fieutenants;

7.3 x m islessthanorequaltothenumberoflieutenants;

8.thereareatmostm faultyixoCessors;

9.allofthefieuteuantnameson I me legalindicesintothevectorvez.

We believe that this is a reasonable transcription of I_l into our formalism.

Some of our hypotheses may seem unnecessary or arbitrary. For example, hypothesis 6 asserts that the

general is not listed among the lieutenants. This is "obvious" titan the description of the problem and is

not stated explicitly in any of the journal proofs of IC1. However, it is necessary for the theorem to be

valid. Such elucidation of implicit _ptions is one of the side benefits of fully formalizing such a

theoremformechanicallyaidedproof.

We now consider IC2. Recall that IC2 asserts that if the commanding general is loyal, then every loyal

lieutet_nt obeys the order he sends. In our formalization, this means that the value bound to the me of

each non-faulty process must be exactly the value of the general. This is stated formally in the conclusion

of lemma ZC2 in Figure 8.

Theorem. xC2
(_JmpaA.u (m_d

w

m

J

m

I

m

mm

m

mm

tlm

m

(setp I.) ; 1

(not (faulty i)) ; 3 i
(not (mmnl_r g 1)) ; 4
(not (faulty g)) ; 5 __
(1_/ (t_mes 3 m) (lm_ch 1)) ; G I
(1@c/ (£au_t-count 1) m) ; 7
(bounded-numbez-14stp 1 (length vec))) ; 8 ..

(ectu_ (get:i. (v_ t:a g v :Lvec))
v))

Figure 8: _ Versim of IC2

The hypotheses of this lemma ensure that:

m

lID

12 m
m

m

"'5

=

====

I

W

m

!

m

E

m

1. the list of lieutenants contains no duplicates;

2. lieutenant £ is on the list;

3. £ is not faulty;

4. the general g is not among the lieutenants;

5. g is not faulty;

6. 3 x m is less than or equal to the number of lieutenants;

7. the total number of faulty processors is less than or equal tom;

8. each lieutenant name is a legal index into ve_.

3.3 Comments on the Proof of the Interactive Consistency Conditions

We will not review the proofs of the interactive comistency conditions here; except to make a few

comments relating to the fact that the proofs have been machine checked. The complete script of

Boyer-Moore "events" necessary to replay the proof is av_le upon request.

The proofs of lemmas IC1 and zC2 are a fairly difficult exercise in mechanical theorem proving. In one

sense, there was no woof discovery; Lamport, Shostak, and Pease provide "journal level" proofs that

their version of the algorithm satisfies IC1 and IC2. However' _ gapbetW_ what is currently

acceptable to even the best of mechanical theorem provers and to the mathematically sophisticated reader

of a technical journal is still substantial. This does not imply, however, that the completely formal

treatment required to render the proof acceptable to a mechanical proof checker is useless. We believe

that we gained considerable insight into the Oral Messages algorithm from our formalization.

- I =LL S=--I =' = _ _ _" ,,=_ ! (IL . = '_

To illustrate this, consider the proof of the following iemma from [7]. This is the key lemma from which

IC2 follows.

LEMMA h For any m and k, .41gorit_ OM(m) saa_s IC2 _" there are more than 2k ÷ m

generals and at most k traitors.

PROOF. The woof is by induction on m. IC2 only specifies what must happen if the
commander is loyal. It is easy to see that the trivial algorithm OM(0) works if the commander is
loyal, so the lemma is true for m=O. We now assume it is true for m-l, m > 0, and prove it for
fit.

In step (1), the loyal commander sends a value v to all n-1 lieutenants. In step (2) 4, each loyal
lieutenant applies OM(m-l) with n-I generals. Since by hypothes_ n > 2k+fit, we have
n-1 > 2k+(m-l), so we can apply the induction hypothesis to conclude that every loyal

lieutenant gets vj = v for each loyal lieutenant j. Since there are at most k traitors, and
n-1 > 2k+(fit-l) > k, a majority of the n-I lieutenants me loyal. Hence, each loyal lieutenant has

vi = v for a majority of the n-1 values i, so he obtains fitajoriry(v I.....vm.1) = v in step (3), proving

_rheee m:l_e tt.fer to their c_filxim of the tl$otithm mPmdu_ in _ 1.

13

W

IC2. J

Though seemingly straightforward, there is a considerable amount of suppressed detail in this proof. In

particular, the induction hypothesis refers to what happens after each round of message exchange without

worrying about the intermediate states which occur dur/n& each toand. In terms of our mutually recursive

version of the algorithm, the lX'oof above describes the induction by referring to what happens after each

call to yore* and simply assumes what happens in the calls to road.*.

What happens in those calls, and what is crucial from the point of view of a fully formal proof, is that

there is a rather involved invariant maintained by the algorithm. A key part of _ _variant can be stated

roughly as follows: after each round of message exchange all of the non-faulty processors agree on a value

for the general, that value being the general's actual value. This notion we call non-faulty agreement.

Formulating and proving an appropriate version of the invariant for IC2 was the primary effort in the

proof. The final invariant is illustrated in Figure 9. We will not bother to describe some of the subsidiary

concepts such as non-£au.].ty-vaJ._m, which are involved in the statement of the invariant. Suffice it

to say that this theorem capua_ that key pmlxmy maintained by yore which guarantees that it satisfies

IC2. The corresponding invariant for ICI is substantially more involved.

W

Advocates of the view that fully formal _ _hine checked proofs do not contribute materially to

mathematics may feel that our formalization elucidates only detail which is beaer suppressed. We feel,

however, that we understand the algofi"_ and _ reason it works better for the effo_ Moreover, we feel

that a mechanically checked proof such as ours can eliminate errors which the much touted "social

process" might overlook. This is particularly true for domains such as this where a weft-developed

intuition is difficult to cultivate.

3.4 Extending the Specification : :_ _ ;_ _: ' -'

Our function veto describes an "abstract implement" of the OMalgoritlun wldch has been proved to

meet its specification, i.e., to achieve interactive consistency in the presence of a limited number of faults.

Our fcs'mulation of vom is, as much as possible, a direct transcription of the Pease, Shostak, and Lamport

into the formalism of the Boyer-Moore logic.3 _ui_ goal, however, was a hardware

implementation of this algorithm at a much lower level of abstraction and as part of a fault-tolerant

5AneadiervenfionusedmaPl_lls _ tlumvectorsu thebmicdataaructme.Thisvcasimwu perhapldishtlymoreabaract
aaddo_r to thepubiidaedalgorithm.However,wefoundit lessamemblefornutIViqto • luudwtfeimplementation.

14

D

v

!

J

!

Theorem. VOM- IC2- INVA_TANT

(impllu
(and (Htp 1)

(bounded-numbe c-listp

(member i 1)

(not (faulty i) })

1 (length vec))

(if flg

(implies

(and (not

(not

(leq

(equal

(mamber g 1))

(faulty g))
(plus (times 2 (fault-count 1))
(lm_/ch 1)))

(get i (yore flg m g v 1 vec))
v))

m)

(implies

(and (suhbagp g i)
(equal (length v) (length vec))

(lessp (plus (tiaras 2 (fault-count 1)) m)

(1Qn_ch 1))
(non-faulty-agreement (non-faulty-value g

g v))
(not (lessp (occurrences

(non-faulty-value g v}

(get i (yore flg m g v 1 vet)))

(if (mm_z i g)

(subl (good-count g))
(good-count g)))))))

v)

device.

Figure 9: The lnvariant for IC2

Ahncd

1.

,

.

in that direction, we need three intermediate steps at the specification level.

The formulation of vomgiven above takes the perspective of a group of processes uTing to
determine the private value of a single generaL We require a formulation in which each
process tries to determine the values of a/l of the _ l_'ocesses. This requires running.

applications of OM.

As previously formulated, yore is a recursive function in which the parameter m determines
the depth of recursion. This does not map well onto a lower level implementation in which
the algoritinn is implemented as a sequence of "steps." To ease this mapping, we require a
function which computes traces of the execution of the algorithm.

The abstract implementation was perameterized for an arbitrary number of pt-ocesses. We
wished to implement the instance in which n = 4 and m = 1.

15

mm

3.4-A Multiple Applications of OM

To reach agrecm_t, each process among a set of processes must act in turn as the general in an

application of vc_. As a step in that direction we dcfmc a subsidiary function om to simplify the argument

list to yore, relying on the assumption that processes have indices in the range [0.. n-l]. We then

define the function oral recursively to apply om to each member of a list of process names in turn.

Finally, we simplify the argument list of oral with the function o,-.1.£.

Definition.

(ore n g v m)

(vom t m g v (delete g (indexlist n)) (£nit nil n))

Definition.
(c_1 I vec m)

zg

(if (listp 1)
(cons (put (caz 1L _ =

(get (car 1)

nil)
(oml

v@c)

(_ (langCh vec) (car 1)
(get (ca_ 1) vec) m))

(cd.c 1) vec m))

Definition.
(ca_i vec m)

am

(oral (indexliet (length vec)) vec m)

The function omli produces an n x n matrix in which the i _ mw _u_ evewonc's guc_ .t i's

loc_ v.luc. The i _ column of _c maUix is the i._ractive co.._.cy vector f_ pmce_ t 6 T_s v_tor

_nu_ns _c vau_ which _ £ _nclud_ me uhc k_] v.tu_ f_ _h of _c o_ p_c_es. In

genera], (get i (get g (cmli vec m))) _ the value which process i concludes is process g's

local value.

We _n prove the following two facts about oa_ using the interactive consistency conditions proved of

I. In the matrix value returned by c_1, any two non-faulty processes _:_ local value

ofallother processes.

for

These facts correspond to ICI and IC_ respectively. The form_ vcr_ons arc d_p_yed be_w.

u

mm

ms

z

m
mm

mm

_m

ms

mm
!

E

_m

m

IS

s

m

_Sincc d_s msn_ is many • li_ d tim, k is eulet m fe/ch • "row" dum • "column." To exusct the imemcdve coasinency

vecu_oonveniendyn_mn_ d_g d_ equivslmtof.. n_rix invmim.

16

m

mm

v

W

Theorem. ONLI-ICl

(implies (and (lessp g (length veC))

(lessp i (length vec))

(lessp J (length vec))

(not (equ_ (fix i) (fix g)))
(not (equal (fix j) (fix g)))
(not (faulty (fix i)))
(not (faulty (fix J)))

(llssp (times 3 m) (length vec))
(leq (fault-count (indexlist (length vec))) m))

(equal (get i (get g (omli v_ m)))
(get j (get g (omli vec m)))))

w

l

Theorem. OMLI-XC2

(implies (and (lessp g (length vec))

(lessp i (length vec))

(not (faulty (fix g)))
(not (faulty (fix i)))

(lessp (times 3 m) (length vec))

(leq (fault-count (indexlist (length vec)))

(equal (get i (get g (omli vec m)))

(get g vet)))

m))

From these two properties, we can prove that two non-faulty processes have identical interactive

consistency vectors. Recalling that our ultimate goal is a fault-tolerant system of processors, we can be

assured that the non-rarity im3cessors generate identical actuator values if these are computing by

applying the same filtering function to these interactive consistency vectors.

3.4-B Traces of OM Applications

The function omli formally describes a single instance of n pmc_ reaching agreement through m

rounds of infcxmation interchange. This formalhation _ not Conducive to mapping down to a lower-level

implementation which executes the algorithm in a number of "steps" and maintains a process state.

Therefore, we define a trace_tion output* to m_ a coition of processes attempting to reach

agreement through time. The ir_ut to output* is sequence of n-tuples of sensed values where each

element of this sequence is a vector of sensor values. The function produces a sequence of vectors of

actuator values.

At each step, the wac_ function applies a step function output. The input to this function is one of the

input n-tuples and its result is one of the output vectors. The function output in turn involves an

application of oral, and of a filter function which computes an output value based on an interactive

consistency vector. An example of such a filter function is majority. The function output is defined

as follows:

17

m

(output vec m)

(filterlist (_tr_x-inve_ (c¢_£ vec m)))

I

i

Hcrc filterlist applies the filtez functionto_K:h element in a list; matzix-invert inverts the

data st_ct_e t0put it--in_a-¢ormat in which the interactive consistency vectors ace readily accessible as

descn'ted in footnote 6. The trace function can now be written as follows:

Defmltio..

(output* senses n)

(if (llstp senses)
(cons (output (caz senses} m)

(output* (cdz senses) m))

nil)

m

i

I

The Byzantine properties of ore.1,are provably inherited by the u'ace versioo. In particular, we can prove

that, given a sufficiently small number of faulty processes, two non-faulty processes always agree on their

outpuLs. Formally, this result is stated in the following lemma:

Theorem. OU'_UT*-F&ULT-TO_

(i._lies (and (numberp i)
(numberp j)

(lessp i n)

(lessp J n)
(not (faulty i))

(not (faulty j))

(tablep n senses)

(lessp k (length senses))

(lessp (times 3 m) n)

(leq (fault-count (indexlist n)) m))

(equal (get i (get k (output* senses n)))

(get 5 (get k (output* senses n)))))

Notice, Oat the trace-oriented ve_ion shiftsthefocusofattentionf_om thematrixmaintainedby the OM

algorithmtotheactualoutputsofthealgorithm,i.e.,tothesignalsgoing totheexternalactuators.

3.4-C Instantiating the Design

Our final step at the specification level is to decide how large a system of communicating processes we

wish to implement. By instantiating the trace function with n ffi 4 and m ffi 1, we obtain a specification for

a system of four redundant processes that achieve B_ agreement, and which can tolerate up to one

faultyprocess.The architectureofthissystemisillusu'al_inF%q_reI0.Itwouldbeuivia[toimplement

our specificationwitha differentnumberofprocessors.However,theimplementationdetailswouldbe

i

w

i

m

B
i

m

us!

IIW

j_

18
ulm

-.- quite different.

m Figure 10: Four Redundant Processes

4. The Implementation and Its Proof

Implementing our circuit in hardware entails _ribing the internaJ :logic of each of the four processes

represented by the boxes in Figure 10 and explaining how these are connected to yield a fault-tolerant

system. The processes achieve agre_ent dter exchanging messagesl To prove this fact, we show that

our hardware implementation is a correct implementation of the abstract version described in the previous

sections.

m

a

D

W

Lmm_

m
!

u

m
W

4.1 The Implementation

One goal of our design was for the four im3cesses to be identical in order to minimize the amount of proof

effort and to redut_e tbe expense of _ting thesy_s_. Thus, in describing the des!gn of a single

process, we are actually describing the design of each of four processes.

Each process has five inputs: a sensor value,cl_' _ _ _ from each_of _ _ _ processes.

Additionally, each process has four outputs: an actuator and data lines out to each of the other processes.

These inputs and outp.uts ate listed below. In our formal description of the circuit the widths of the data

paths are not fixed. This leaves the implcmento¢ free to choose a data width.

19

• sense:a sensed value.

• clock: a clock waveform.

• data_ia: inputs from the three other processes.

• data_ou_ outputs to d_ three other processes.

• actuator: output to some _Um[or.

l

clock

Figure 11: The Internal State of a Process

--4___t

m
J

u

m

mm

I

m

W

II!

m

W

Figure 11 shows the i_ernal state of a single process, along with some of the internal data paths. The

internal state of a l_ocess contains the following components.

• counter: a 3-bit counter, used to cycle a process through 8 steps.
- _:, = - ,:_-Y_, ==_ _ :=.:-..... - - _- _ _ , _ _,i,_'-_--_--=_,_ . = , _ -: -

.,matrix: a 3 x 3 man-ixof'_ used to store values receivedduring the information

exchange.

• icv: the 1 x4 inter_tive consistency vector for this Im3Cess. Z_[3] holds the pfocess's
local value, derived from the sense input for that process.

The inter-connectionof _ _ to accomplish informatkm exchange isdepicted in Figu_ l_2__.ach

arrow represents one-way communication. For each i _ {O, I, 2, 3}, and j _ {0, I, 2}, d_a...£n[_ for

m _

U

i

m

20

W

-@

w

H

process i is connected to _taout[2 -Jl of _ (i+j) rood4. The interconnection scheme is

designed to assure that all of the processes are identical.

One result of our desire for uniformity is that the interactive consistency vectors computed by two

non-faulty processes are not actually identical, but are, in fact, rotations of one another. This implies that

the filter function defined on the interactive consistency vector must be invatiant under rotations of its

vector argument.

Each process cycles through the 8 steps displayed in Figure 13. The purpose of each step is described

below. The steps are numbered by the value of the 3-bit counter. The four processes share the clock input

and hence perform these steps synchronously.

0. Read the sensed input. Save this as the process's local value in ZOv[3]. Also, place this
value on the output lines to the other three processes. This begins the report of each
process's local value to all of the other processes.

1. Receive the local values of the other three processes, and store them in row 0 of the matrix.

2,3. Fill the remaining rows of each matrix with the reports of each process's value. In steps 2
and 3 each process receives two values from each of the other three processes. At the end of
step 3, the information exchange required for the four instances of OM(1) is complete.

4. Compute the interactive consistency vector. This is accomplished by computing the majority
of the three reported values for each of the other processes. (The circle labeled M in Figure
11 represents a 3-input majority circuit.)

5. Compute the actuator output based on the value of the interactive consistency vector. This is
represented by a call to a function fdter. In our specification filter is not defined, but is
constrained to be invariant under rotation of its argument

6,7. No state change other than inc_n_g thecounter.

This functionality is encoded in a function].ocal-stap which tests the clock value and updates the

process state accordingly. The overall circuit is described by a function global-st:ep which takes as

input a list of four sensor values and a list of fcer process states and reuuns a list of the updated process

states. Schematically, g].obaJ.-st_ap is merely:

Definition.

(gZoba1-step senses states)
j -

(_.J.St <loCal $tep /or process O>

<local step for process i>
<local step for process 2>

<local step for process 3>)

This is the step function for our system of four processors. The "interpreter" for this system is a function

global-Steps which _gl_l-step-_Y': A _ version c* is_ defined Which

returns the list of actuator output 4-mples produced after each global step. From the description above, it

B
m

m
E

• 21

shouldbeclearthatthedementsofthislistchangeonlyeveryeightpositions. m

J

W

mm

Figure 12: Process intercounectiom

mira

m

I

The behavior of oct circuit can be summarized as follows. Each _ _its input and sends it out to

each of the other processes, each process passes the values received on to the other processes, computes

an interactive consistency vector on the basis of the values received, and then produces an actuator value

by applying a filter function to this vector five steps after the input was sensed. Behavior is entirely

syncluonons among the four processors. The actuator value remains fixed until a new actuator value is

computed on the next cycle. The process repeats as long as there are senses on the input fines.

4.2 The Proof of Correctness of the implementation

The instance of the trace function output* described in Section 3 with n = 4 and m = i Serves as a

specification function for our circuit design. This function _ludes acall to OM to perform the

information exchange. Because OM achieves in.rive consistency, we have proved that at any point in

the trace all non-faulty _ agree if there are a sufficient number of non-faulty processes.

Recall that output*, our trace _on at the specification level, returns the actaator 4-tuples following

a complete round of theOM algorithm. Similarly, out trace function__ ¢* at the implementation_ level

projects out of the state of each process the value of its actuator after each global step. The appropriate

relationship among g't oba3.-stip, o*, and output* is depicted in Figure 14.

Noti_: that the time granularity of c* is greater than that of output*. It takes ¢* five clock ticks=to

compute actuator values in response to a set of sense inputs. The intexmcdiate steps of the trace arc not of

interest in the statement of interactive consistency. To relate the two traces, it is useful to define the notion

22

m

W

m_

N

w

R

W

Im

m
!

W

V

I

M

I

Case Counter:

O" date out [i] 4- s,mse, i• {0,I,2}

i_r [3] 4- sense
clock 4- clock+l

I: matrix[O,i] 4- input[i], ie {0,1,2}

data_out[O] 4- input[l]

data_out[l] 4- input[O]

data out[2] 4- input[O]
cloc_ _- clock+l

2: matrix [1, i] 4- input[i], ie (0,1,2}

data_out[O] 4- matriz(0,2]

data_out[l] 4- matrix[O,2]
date out[2] 4- matrix[O,l]

clock 4- clock+l

3: matrix[2,i] 4- input[i], i6 [0,1,2}

clock 4- clock+l

4: i_[0]

i_[l]

icy[2]

clock

4- majority(matrix[O, 0],

4- majority(matrix[O, i],

4- majority (matrix[O, 2],
4- ciock+l

matrix[I,2], matrix[2,1])

matrix[l, O], matrix[2, 2])

matrix[l, i], matrix[2, O])

5 : Actuator 4- filter (ic_)

Clock 4- clock+l

6 : clock 4- clock+l
= .

7 : clock 4- clock+l

F gure S ps

m

E

z

w

of n-selection. The n-selection of traceisthe_ _si_g of successive (n- i)" elements of trace.

The proof of correcmess of the circuit design _luires the proof 0mr some selection on c* equals _e u_ce

output*. We have chosen. = 7 as the selector value in our proo£ Figu_ 14 depicts the relationship

_ovcd bc_ccn c* and output*. We we_ able to fommHy csu_h _c foliowmg cquafi_ rcL_ng _c

behaviorof the circuitdesignto the specificatio n,,_tion.

(equal (select 7 (c* senses states))
(output* senses 1))

Recallthe theorem output*=fault=tolerant (discussedin Section3.4-B) which says thattwo

non-faultyprocessesagreeon theiroutputs.The conclusionofthattheorem isthat:

== 23

output* --N

W

J

% --"
gls eps-

Figure 14: C_nce among Trace Functions

W

U

I

m
l

J

u

w

(equal (get i (get k (output* senses m)))

(get j (get k (output* senses m))))

Substituting (select 7 (c* ..sGmse s _..states).)- into this lamina, with n=4, m = 1 and

l = {0, 1, 2, 3} gives a theorem which says that the circuit design, as defined by c*, achieves agreement

every 7th "tick" of the clocL

Theorem. _LEMEN_TION-r&ULT -TOLERANT

(implies

(and (nunberp i)
(nu_aerp J)
(lessp 4 4)

(lassp J 4)
(not (_aulty i))
(not (faulty J))
(tablep 4 senses)
(lessp k (length senses))
(leq (fault-count (_£st 4)) 1)

(good-stata-listp states)

(equal (length states) 4)

(_ (_ks star*s) (init 0 4)))
(equal (get i (get k (select 7 (a* senses states))))

(get j (get k (select 7 (c* senses states))))))

24

m

w

I

U

Ug

u

m

2__
ug

The last three hypotheses assure that the states parameter is properly formed and that the clocks in

each local state are initially synchronized (set to 0). We take the proof of this theorem as a satisfactory

formal demonstration of the correctness of the circuit design.

5. The Impossibility Result

The OM algorithm described in the previous sections achieves interactive consistency in the presence of m

faults if there are at least 3m + I total generals. An interesting fact proved by Pease, Shostak, and

Lamport [8] is that this performance is optimal in the sense that no algorithm can achieve interactive

consistency solely via message exchange if there are more faults.

We have fc_nalized this result in the Boyer-Moore logic machine checke_ its proof. Proving this theorem

mechanically in the Boyer-Moore _ _ver Wasan inte_g challenge for several _ns.

• It has typically been quite difficult to prove a negative existential statement in the Boyer-
Moore logic, except in cases where the range of the quantifier is inductively defined, which
is not true here.

• Statement of the theorem requites consideration of some second order concepts. The Boyer-
Moore logic is first order.

Our formal statement of the impossibility result used several features which have been added recently to

the Boyer-Moore logic and illustrated a somewhat surprising versatility of the logic. We are aware of at

least two previous proofs of impossibility results [2, 9] carried out in the logic. However, these results

were specified and proved before the addition of these constructs which are currently available. Though

we believe that this specification and proof could have been carried out without them, the use of the

partialspecificationcapability[4]and quantificatim and free variables[5]made thespecificationofthe

problemextremelynatural.

$.1 Review of theTheorem

To statetheproblem,we finditconvenienttoquoterath_extensivelyfi'om[8].

First,def'meascenarioasamappingfromthesetP+ ofallnonemptysu'ingsoverP,toI/.Fora
givenp ¢ P definea _scenar_ asa mappingfrom thesubsetofP+, consistingof strings

beginningwithp,toV.

The appropriateintuitionhereisthatprocessocsattempttoachieveinteractiveconsistencyby exchanging

theirprivatevalueswithotherprocessesviamessages.A valuemay be relayedthroughany numberof

p_. Intuitively, a scenario ¢_takes a suing PiPi.I...P2Pl and _ the value that Pl s_d that P2 said

that Pi.J s_d that Pi'S private value was. For any nonfaulty processor q, we know that a(q) is q's

25

l

privam value.

A processor which is nonfaulty will faithfully relay any value received. This motivates the following

definition.

For a given choice N _ P of nonfaulty processors and a given scenario or,say that o/s consistent
with N if, for each q ¢ N, p • P, and w • P* (the set of all strings over P), o(pqw) = o'(qw). (In
other words, ¢_is consistent with N if each processor in N always reports what it knows or heats
uuthfully.)

Now we are ready to define the notion of interactive consistency.

For each p • P, let Fp be a mapping which takes a p-sceaario ap and a processor q as arguments
and returns a value in V. (Intuitively, Fp gives the val_ that_/>computes fo r the element of the
interactive consistency vector corresponding to q on the basis of Op.) We say that (Fp I p • P)
assures interactive consistency for m faults if for eac.h choice of N _ P, [NI> n - m, and for each
scenario o consistent with N,

(i) for all p, q • N, Fp(Op, q) ffiif(q),

(fi) for all p, q • N, r • P, Fp(ffp, r) = F¢(ff¢, r),

where ¢ypand ff¢ denote the restrictions of o to strings beginning with p and q, respectively.

It is helpful here to think of F as encoding some scheme by which the processors attempt to achieve a

common view of each other's private values (the "interactive consistency vector"). Fp is some

computation that processor p performs based on the (arbitrarily large) collection of messages which arrive

at p after being passed on by other _rs. :

Now this scheme (whatever it is) achieves interactive consistency if each nonfaulty processor learns the

private value of each of the others and any two nonfaulty processors agree upon a value for each other

proce:_or in the system. If this third processor is faulty, we have no assurance that this common value is

actually the private value of that process; it may be some "default" value.

The theorem from [8] which states our desired imposs_itity result is given below:

THEOREM. If IVl > 2 and n < 3m, there exists no {Fp I p • P} that assures interactive

consistency for mfaults. 7

w

Ill

m
u

III

i

W

m
lilt

L_

U

m

m
l

7Thetheo._ ss statedhereis .aually f.he; intersc_veom_is _ed if _ = ,, <2. Therdore.thed_nm nulu/_s
u_ sd_tio_ _ th,/,, >3. TlmPease.Sho._. md _ _ th/sts evid_ fiem el,elfpmd.

26

--z

E,_

m

m

H

W

w

5.2 An Informal Proof Sketch

The proofisareduct/oadabsurdum.Considerasystemofthreecommunicatingproc_ ofwhichone

isfaulty.Recallthatourgoalistodefineageneralschemethatachievesinteractiveconsistencyamong

nonfaultyprocessors.Thisschememustbe such_ ineachcase,thetwo nonfaultyprocessorsmust

come to an agreement about the values of all three processors, where the va/ues for the nonfaulty

processors must be the actua/private values for those processors. In other words, each nonfaulty process

is computing a vector of three values, IvA, va, VC]with the conslro_nts that:

IC1. the vectors of the nonfaulty processors are identical;

IC2. if process_ X is nonfaulty, the value recorded by each nonfaulty processor for X must be the
actual private value of X.

Recall also that any nonfaulty process_ may have no way of determining which of the other processors

may befatty.

Now consider the three diagrams labeled a, [3, and o in Figure 15. Each diagram shows three

communicating ixocessors A, B, and C. In each picture the shaded processor is only faulty processor

among the three, and the labels on the arrows are C's putative private value as relayed by the processor at

the blunt end of the arrow.

Assume that we have an algorithm which can always achieve inter_five consistency among three

processors even if one of them is faulty. Consider scenario o. By ICI, our scheme will achieve its goal

only if processes A and B record the same value for processor C. However, from A's perspective scenario

o is totally indistinguishable from scenario 0t. In o., A has no recourse but to record v as C's value if

conswaint IC2 is to be satisfied. Therefore, given exactly the same information, A must also record v as

C's value in o. Similarly, fix)m B's perspective o is indistinguishable from scenario _. Consequently, B

has no recom's_ but to record v' as C's va/ue/n scenarios ¢r and _. Therefore, A and a record different

values for C in scenario o, in violation of IC1. Our assumption that we could devise an algorithm which

would assure interactive consistency has led to a contradiction.

The informal proof sketch above is actually quite close to the idea of the formal proof. The basic notion is

that if at least a third of the processors ate faulty, we partition the pmcessocs into three sets of processors

which collectively behave as A, B, and C above. We then define three scenario's which behave as _ 6,

and o. The reader is invited to scrutinize the proof in [8], as our machine checked version follows very

closely the proof given there.

27

ilp

_m

1111

i

J

m

D

U

(Y i

Figure 15: Three Scenarios __

5.3 Specifying the Problem in the Boyer-Moore Logic

In this section we explain the specification of this problem in the Boyer-Moore logic [3]. The version of

thelogicusedhasbeenextendedwithfacilitiesforhandlingquantification[5],freevariables[6],and

functionalvariables[4].We a.mun_thereaderisfamiliarwiththisversionofthelogic.

Key notionsinthestatementoftheformalproofarethoseofa scenarioand ofap-scenario.We do not

f'mdi_necessaryto_ _ notionsdirectly.Rather,we introducethenotionoftheapplicationofa

scenario to a string to returna value. This is done with the Boyer-Moore constra£n event displayed

io'. _ _

l

W

m

I

U

28

w

L

r

D

Constrained Function Definition.

lntroduclngFunctions: apply-scenario, valuep, p-restrict.

Cons_-in_:

(and (valuep
(implies

(implies

(apply-scenario sigma w))
(equal (car w) p)
(equal (apply-scenazio (p-restrict sigma p)

(apply-scenario sigma w)))
(and (valuep vl) (valuep v2))
(equal

(apply-scenario (list flg aa bb vl v2) w)

(abe flg ea bb vl v2 w))))

WimessFunctions:

apply-scenario: (lmubd,a (x y) (abc

valuep: (lambda (x) t))
p-restrict: (lambda (z y) x))))

(car x) (cadr x)
(caddr x) (cadddr x)
(caddddr x) y)))

w)

M

W

gJ

m

W

This event introduces the new function symbols apply-scenario, valuap, and p-restrict along

with _nmn a_oms which govern _em.-In_ifively, apply-scenario Lakes to a scenario sigma and

a string w and _tun_ a value _cogn_ed by the function veluap, p-restrict takes a scenario

sigma and a processor p and returns the p-scenario si_ap. Any application of sig_ltp tO a string

beginning with p is identical to an application of sigma to that string.

The final axiom about apply-scenario refers tOa specific defined function abe and is needed for the

purposes of the proof. We will discuss it at length later, but basically it says that we are going to represent

some specific scenarios by lists of a particular form and the application of these specific scenarios is

captth-edby a function abe to be defined later.

..... _ ! _

The constrain event also supplies previously defined W_ness functions for thenewly introduced

function symbols which satisfy the axioms. This assures that the axioms are satisfmble and do not

introduce an inconsistency into the theory. A constrain is only accepted by the theorem prover if it can be

established that the proposed axioms are satisfied by the supplied witness functions.

E_

W

=--

b_

Next we define the notim of a scenario o being consistent with N, where N is a set of nonfaulty

processors. This is defir_ via the Skolemized Definition event below. Such an event defines a concept

involving explicit quantification by adding axioms representing the Skoiemization of the evenL (See

[5] for details.) Notice that the det'mitlon n-consistent is very close to the definition of this concept

in [8].

29

Skokm_ed Dermitioa.
(n-consistent s£pm N)

g_

(fozall (w p q)
(_gplies (mmber q _)

(equal (sppi¥-scana=io
(apply-sc_na=£o

sigma (cons p (cone q w)))
sigm (cons q w)))))

I

To defme our key concepts, we'll need the auxilian/notion of p-scenaz£o-_lulvalance.

Skolemized Dermitioa.

(p-scanar£o--@qu£valance s£gmal s£gma2 p)
I

(fozall w
(_lusl (appl¥-scqma=£o s£_1 (cons p w))

(apply-scm_az£o siWxm2 (cons p w))))

Two scenarios are p-equivalem h'Tthey behave simiL_r|y on all strings beginning with "p." This notion

will be needed in the proof.

We are finally ready to defme our main concept of an algorithm assuring interactive consistency for m

faults. Since we would like to prove that under certain comfitions no such algorithm exists, we need a

very general characterization of the possible candidates for such an algorithm. We consu'ain a family of

functk)ns rf. This family represents the collection of functions characterized in the notation of [8] as

{Fp I;, • P}. i'f is conceptually a second order function which takes a p-scenario and a processor q and

retm'm the private value which p computes for processor q on the basis of the information in the

p-scenario. Thus, the call (rf p sig,,,a q) is our representation of the expression Fp(op, q) of the

published proof.

The f_nily rf of functions is completely arbiu'ary, except that whenever two scenari___are p-equivalent

they a_e indistinguishable from p's perspective. It is this constraint which relates the notions of applying

a scenario and the appfication of functions from rf. Without it there is no formal tie between rf and our

intuifi,m that !'£ works by applying scenarios to stfin-gsto compute the private values of processes, i'f is

introducedwith the following constzain evenL

I

m

u

w

l

rain

I

U

l

I

IM

m

J

3O
!

LJ

= I

_I

w===

=:=

q_

7_

Constrained Function Dermition.

Introducing Function: FF.

Constraint:

(implies (p-s=e=_rio-e_|.valence s£_1 sig=m2 p)
(eqxml (_r p sig=-i q)

(rr p si9=_.2 q)))

Witness Function:

rr: (1_ (z y z) f)

We are now ready to de[me the notion of a scheme which assures interactive consistency for m faults.

Th_ _ introducedwithd_ following evenL

Skolemized Definition.

(Ff-consistant-fo=-m-faults _ m)

(fo=sll (N signs

(implies (and

Pq:)

(subset N Pp)

(leq (length Pp) (plus (length N) m))
(N-consistent sienna N)

(=a=be: p N)
(=a=be: q N)
(=,m_: : Pp))

(and (equal (rf p (p-restzict sigma p) q)

(apply-scenaEio sigma (list q)))

(equal (Ff p (p-restrict sigma p) :}

(Ff q (p-Eestrict si_pna q) r}))))

This event defines a conjecture that Ff 8ssure8 interactive consistency for the ,- faults in the set of

processes Pp. We will prove that, under certain hypotheses about m and Pp, this conjecture i_ false.

Let's examine the definition Ff-consistent-foz-m-faults more closely. The hypotheses of our

conjecture are that we have a set N C Pp of nonfaulty processors, that _ _ _ + m, and that we have a

scenario sigma which t_ cons_mt _ N. We also assume p ¢ N, q • N, and : • Pp. Under

these assump6on, rf assures interactive consistency fc¢ m faults ff the conclusion is satisfieAi Notice that

the two conjuncts of the conclusion are exactly (i) and (ii) of the definition of interactive consistency fc¢ m

faults of [8]. Namely,

and

rp<%.q): c q),

Fp(Op, r) = Fq(Oq, r).

Given this defmifion/oonjec|me, it is swaighfforward to state the Boyer-Moore analogue of the

impossibility rcstiJL

31

'P_,orem. Z_OSSZBZZ,.Z'_
(implJ.** (m_L (Ntp]_)

(paztition Pp _ lib CC m)

(leq (length _) {times 3 m))
(valuep vl)
(vLluep v2)
(not (equal vl v2)))

(not (r£-conslstQnt-fo=-m-faults Pp m)))

It asserts that under certain conditions on Pp and m, the assumption that rf assures interactive consistency

for m faultsleads to a contradiction. These assumptions are the following:.

1. Pp isa set (contains no duplicate IXOCessnames);

2. PIPcan be "partitioned" into three non-empty sets _ Ira, and ¢_, each of which have size
less than or equal tom;

3. m < IPpI;

4. Ippl < 31a;

5. there are at least two distinct values vl and v2.

Notice that the assumption that i_ can be partitioned into three nonempty subsets is implicit intheproof

given in [8] but is certainly not implied by their statement of the thee_m. The theorem as stated in [8] is

false if Ix,pl < 3, since interactive consistency can always be achieved in that case.

5.4 The Machine Checked Proof

The basic structure of the proof is very similar to that of the proof in [8] which is described as folloWS:

Since, S 3m. P can be partitioned into three nonempty sets A. B. and C [it is _ _ we need
ore"additional hypothesis that. > 3], each of which has no mo_e than m members. Let v and v'
be two distinct values in V. Our general plan is to construct three scenarios a, 1_,and o such that
a is consistent wixh N = A u C, _ with N = B u C, anda with N = A vB. The n_mbers of C
will all be given private value v in cxand v' in 1_. Moreover ct, p, _ _ _ be consu'ucted in
such a way that no processor a e Acancfisfinguishafromo(i.e.,aa=oa)andnop rocessorb

B can distinguish 13from o (i.e., 13b = ab). It will then follow that for the scenario a
processors in A and B will compute different values for the members of C.

The three scenarios a, 13,and o are really three mutually recursive functions on P+. We define all three in

the logic with the function abc, where the value of £1g determines which of the _ scenarios is being

applied.

m
1

I

W

I

I

I

m

i

1

m
m

gl

m
B

m1

i
1

m
i

1

i

I

m
iI
1

m

1

I

32 __
1

W

w

w

w

m

E--

w

Definition.

(abc flg as hb vl v2 w)

(if (and (listp w)

(not (membeE (lastcaE w) as}}

(not (membeE (last_az w) bb}) }

(let ((wl (car w))

(w2 (cad_ w)))
(case flg

(s (if (listp (_Ir w))

(if (listp (cddr w))

(if (member w2 hb)

(abe 'b as bb vl v2 (cdz w))

(abe 'a sa bb vl v2 (cdr w)))

vl)

vl))
(b (i.e (listp (e_x v))

(it (listp (cdd,_ w))
(if (mmber w2 as)

(abe's sa hb vl v2 (cdr w))

(abe 'b as bb vl v2 (cdr w)))

v2)
v2))

(otherwise

(if (listp (cdz w))

(if (listp (cddr w})

(if (and (not (membez w2 as)}

(not (membeE w2 bb) })

(if (member wl as}

(abe 'a aa bb vl v2 (cdz w))

(abe 'b aa bb vl v2 (cdr w)))

(abe 'c aa bb vl v2 (cdx w)))
(if (.mmber wl bb)
.... v2

vl))
vl))))

vl)

EGi

=

L_

l

We prove that the scenarios so defined ace consistent with specific choices of tz. For example, the

following theorem shows that a is consistent with N = x _, C

Theorem. _aA_szs_2
(_lies (and (valuep vl)

(valuep v2)
(disjoint aa cc)

-. (disjoint (append ee co)]:_))
(n-consistent (limt 'a aa hb vl v2)

(append as co)))

The proof of IMPOSSIBILITY follows by expanding the quantified expression

(rf-consiatent-foz-m-fsults Pp m) duee times, once for each of the dlree scenarioso_ _,

and o, and showing that this leads to a contradiction, in a fashion very analogous to the published proof.

Our machine checked version of the impossibility Im3of was primarily an interestingexercise in formal

33

specificationandmechanicaltheoremproving.We were pleased that our formal proof was quite similar to

the published proof. This similarity was due in large part to constructs recently added to the Boy_r-Moore

logic and the accompanying support in the theorem prover. The use of the partial specifr.ation capability

(constrain events) allowed the addition of axioms characterizing the _w.ond order concepts of

application of a scenario in a provably consistent fashion. The use of quantification (via Skolemized

definitions) made the definition of some intermediate concepts quite natural. Earlier versions of the

Boyer-Moore logic would have requir_ a purely constructive statement of the theorem; this would have

been difficult or impossible to supply in this case.

6, Conclusion

We have verified a low-level hardware implementation of the Oral Messages algorithm of Pease, Shostak,

and Lamport using a high-level abslract implementation as its specification. Because this abstract

implementation has been formally proven to achieve interactive consistency, we are assured that our

low-level implementation is fault-tolerant as well.

We have also machine checked the proof of an interesting impossibility result relating to fault-tolerance.

This part of the work was primarily an exercise in formal specification and mechanical proof checking.

The main achievement of the work described in this paper is the demonsiration of a fault-tolerant device

that can be formally specified, and whose implementation can be proved correct We have shown how to

formally relate an abstract algorillun like OM to a design which is implementable in hardware. The main

limitation of our device specification is that it does not explicitly account for distributed _,

Processes are described as operating synchronously. This simplifies the problem dramatically.

Addressing this limitation is a future goal of onr work.

All of the proofs, from the proof of correctness of the general _ Messages Algori_thm to the _f of the

hardware implementation were fully machine checked. Proponeats of the view that such fully formal and

machine checked im3ofs do not contribute materially to mathematics or engineering may feel that our

effort was superfluous.

From a mathematical perspective, we believe that two important goals of proof ate to increase one's

understanding and intuition about the content and significance of a theorem, and to provide a convincing

axgun_nt that it is, in fact, valid. Our proof efforts led us to develop a very clean and _biguous

statement of the algorithm and its correctness _. We believe that we understand this quite subtle

l

I

w

U

u

m

I

J

u

11

34
I

algorithm and the reason it works much better for the effort. Moreover, our success in convincing a

congenitally skeptical mechanical proof checker of the validity of this theorem practically guarantees that

we have eliminated any errors which the much touted "social process" might overlook. Such confidence

is particularly comforting in domains such as fault-tolerant and real-time computing where a well-

developed intuition is difficult to cultivate; the theorem prover is not subject to being misled by the

urgings of a misguided or ill-informed intuition.

From an engineering perspective, we feel that our approach has several benefits. By proving properties

such as the interactive consistency conditions with respect to our high-levul abswact implementation, we

retain the clarity and _mess of the published algodtltm and benefit from the intuitions derived from

the published proof. By then mapping down to a more concrete characterization, but one which provably

retains the fault-tolerant characteristics of the abstract version, we are able to derive a hardware level

characterization of the algorithm which is trivial to implement. We suspect that an attempt to implement

the Oral Messages algorithm direcdy from the published abstract presentation would be extremely error-

prone.

g_

L _

q_

35

References

1. R. S. Boyer and J S. Moore. A ComputationalLogic. Academic Press, New York, 1979.

2. Robert SI Boyer and J Strother Moore. A Mechanical Proof of the Turin 8 Completeness of Pure Lisp.

Technical Report ICSCA-CMP-37, Institute for Computing Science and Computer Appplications,
University of Texas at Austin, 1983.

3. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, Boston, 1988.

4. R.S. Boyer, D. Goldscldag, M. Kaufmann, J S. Moore. Functional Instantiation in Ftrst Order Logic.
Tech. Rept. 44, Computational Logic, Inc., May, 1989. Published in proceedings of the 1989 Workshop
on Programming Logic, Programming Methodology Group, University of Goteborg, West Germany.

S. Matt Kaufmann. DEFN-SIC An Extension of the Boyer-Moore Theorem Prover to Handle First-

Order Quandfiers. Tech. Rept. 43, Computational Logic, Inc., May, 1989.

6. M. Kaufmarm. Addition of Free Variables to an Interactive Enchancement of the Boyer-Moore

Theorem Prover. Tech. Rept. 42, Computational Logic, Inc., 1717 West Sixth Street, Suite 290 Austin,
TX 78703, 1990.

7. Leslie Lamlxrt, Robert Shostak, and Marshall Pease. "The Byzantine Generals Problem'. ACM
TOPLAS 4, 3 (July 1982), 382-401.

8. Marshall Pease, Robert Shostak, and Leslie Lamport. "Reaching Agreement in the Presence of Faults".

JACM27, 2 (April 1980), 228-234.

9. N. Shankar. Checking the proof of Godel's incompleteness theorem. Institute for Computing Science,

University of Texas at Austin, 1986.

IP

m
I

g

g

u

i

lib

w

u

_Im
11

m

U

J

I

J

m

U

J

36
I

k.

: --=_

¸---4

r

= .

=

w

5_C e *_<]_,,_;rra_O _

Report Documentation Page

,2.

1. Report No.

NASA CR- 182099

2. Government Accession No.

4. Title and Subtitle

Machine-Checked Proofs of the Design and

Implementation of a Fault-Tolerant Circuit

7. Author(s)

William R. Bevier and William D. Young

PeMorming Organization Name and Address

Computational Logic, Inc.

1717 West 6th Street, Suite 290

Austin, TX 78703

Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5, Re_ Date

November I990

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-01

11. Contract or Grant No.

13.

NASI-18878

Ty_ of Re_rt and Peri_ Cover_

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Technical Monitor: Ricky W. Butler

Langley Research Center

16.Abstract

We describe a formally verified implementation of the "Oral Messages" algorithm of Pease,
Shostak, and Lamport [7, 8]. An abstract implementation of the algorithm is verified to achieve
interactive consistency in the presence of faults. This abstract characterization is then mapped
down to a hardware level implementation which inherits the fault-tolerant characteristics of the
abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A
significant result of this work is the demonstration of a fault-tolerant device that is formally
specified and whose implementation is proved correct with respect to this specification. A
significant simplifying assumption is that the redundant processors behave synchronously. We
also describe a mechanically checked proof that the "Oral Messages" algorithm is "optimal" in the
sense that no algorithm which achieves agreement via similar message passing can tolerate a larger
proportion of fault processors.

17. Key Wor_ (Suggested by Author(s))

Fault Tolerance

Mechanical Theorem Proving

Program Verification

Specification

18. D_tribution Statement

Unclassified - Unlimited

Subject Category 61

19. SecuriW Cla_if. (of this report)

Unclassified

NASA FORM i_ OCT 86

20. SecuriW Cla_if. (of this page)

Unclassified

:21. No. of pa_s

46

22. Price

A0 3

u_

Inw

nl

W

n_

